A Biomechanical Comparison of a Novel Expandable Photodynamic Intramedullary System to a Metal Plate and Screw System in Humerus and Femur Osteotomy Models
نویسندگان
چکیده
The biomechanical performance of a locking compression plate system was compared to an intramedullary photodynamic bone stabilization system in a femur and humerus osteotomy model. The photodynamic bone stabilization system utilizes an angioplasty-like balloon that is introduced into the intramedullary canal of a fractured bone, filled with monomer that is then polymerized and hardened by visible blue light delivered through an optical fiber. This system has been in clinical use since 2010. Synthetic bones engineered to mimic the biomechanical properties of natural bone were cut to produce a 10 mm defect mid-shaft, and two groups of specimens were stabilized by either the compression plate or intramedullary photodynamic bone stabilization system. For each bone model, one locking compression plate system was used, and three different diameter intramedullary photodynamic bone stabilization implants were used. Experimental groups were tested for stiffness, peak load, yield load, peak displacement and yield displacement when a load was applied. Additional samples per experimental group were tested for long-term dynamic stability by cyclically loading until failure. It was found that in all biomechanical parameters measured, the 17 mm intramedullary photodynamic bone stabilization system exceeded the mechanical strength and durability of the locking compression plate system in the femur osteotomy model. It was found that in all biomechanical parameters measured, the 15 mm intramedullary photodynamic bone stabilization system performed equivalently or exceeded the mechanical strength and durability of the locking compression plate system. This testing combined with long-term clinical use, and in vivo data from a large animal model, suggest that femur fixation by an intramedullary photodynamic bone stabilization system will provide equivalent biomechanical properties to a locking compression plate once implanted.
منابع مشابه
The fixion proximal femur nailing system: biomechanical properties of the nail and a cadaveric study.
The treatment of choice for early mobilization of hip fracture is surgery, which traditionally employs side plates and screws or intramedullary nails. We examined the biomechanical properties of a new proximal femoral nail system. The new expandable Fixion proximal femur nailing (PFN) system, made of stainless-steel alloy, consists of a nail, a peg and an anti-rotation pin. Upon positioning, th...
متن کاملBiomechanical testing of a unique built-in expandable anterior spinal internal fixation system
BACKGROUND Expandable screws have greater pullout strength than conventional screws. The purpose of this study was to compare the biomechanical stability provided by a new built-in expandable anterior spinal fixation system with that of 2 commonly used anterior fixation systems, the Z-Plate and the Kaneda, in a porcine partial vertebral corpectomy model. METHODS Eighteen porcine thoracolumbar...
متن کاملExpandable intramedullary nail: review of biomechanical studies
This article reviews studies of Fixion expandable nail biomechanical properties in case of long bones fractures osteosynthesis. The purpose of this study was to systematize biomechanical researches dedicated to the expandable nail. There were found seven biomechanical studies published between 2005 and 2008. Among them, six studies are devoted to mechanical experiments, and one is a comment to ...
متن کاملBiomechanical Comparison Study of Three Fixation Methods for Proximal Chevron Osteotomy of the First Metatarsal in Hallux Valgus
Background Fixation of proximal chevron metatarsal osteotomy has been accomplished using K-wires traditionally and with a locking plate recently. However, both methods have many disadvantages. Hence, we developed an intramedullary fixation technique using headless cannulated screws and conducted a biomechanical study to evaluate the superiority of the technique to K-wire and locking plate fixat...
متن کاملBiomechanical optimization of different fixation modes for a proximal femoral L-osteotomy
BACKGROUND Numerous proposed surgical techniques have had minimal success in managing greater trochanter overgrowth secondary to retarded growth of the femoral capital epiphysis. For reconstruction of residual hip deformities, a novel type of proximal femur L-osteotomy was performed with satisfactory results. Although the clinical outcome was good, the biomechanical characteristics of the femur...
متن کامل